Emergent Oscillations in Networks of Stochastic Spiking Neurons
نویسندگان
چکیده
Networks of neurons produce diverse patterns of oscillations, arising from the network's global properties, the propensity of individual neurons to oscillate, or a mixture of the two. Here we describe noisy limit cycles and quasi-cycles, two related mechanisms underlying emergent oscillations in neuronal networks whose individual components, stochastic spiking neurons, do not themselves oscillate. Both mechanisms are shown to produce gamma band oscillations at the population level while individual neurons fire at a rate much lower than the population frequency. Spike trains in a network undergoing noisy limit cycles display a preferred period which is not found in the case of quasi-cycles, due to the even faster decay of phase information in quasi-cycles. These oscillations persist in sparsely connected networks, and variation of the network's connectivity results in variation of the oscillation frequency. A network of such neurons behaves as a stochastic perturbation of the deterministic Wilson-Cowan equations, and the network undergoes noisy limit cycles or quasi-cycles depending on whether these have limit cycles or a weakly stable focus. These mechanisms provide a new perspective on the emergence of rhythmic firing in neural networks, showing the coexistence of population-level oscillations with very irregular individual spike trains in a simple and general framework.
منابع مشابه
Coherent and intermittent ensemble oscillations emerge from networks of irregular spiking neurons.
Local field potential (LFP) recordings from spatially distant cortical circuits reveal episodes of coherent gamma oscillations that are intermittent, and of variable peak frequency and duration. Concurrently, single neuron spiking remains largely irregular and of low rate. The underlying potential mechanisms of this emergent network activity have long been debated. Here we reproduce such interm...
متن کاملEmergent spiking in non-ideal memristor networks
Memristors have uses as artificial synapses and perform well in this role in simulations with artificial spiking neurons. Our experiments show that memristor networks natively spike and can exhibit emergent oscillations and bursting spikes. Networks of near-ideal memristors exhibit behaviour similar to a single memristor and combine in circuits like resistors do. Spiking is more likely when fil...
متن کاملA role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro.
Basic cellular and network mechanisms underlying gamma frequency oscillations (30-80 Hz) have been well characterized in the hippocampus and associated structures. In these regions, gamma rhythms are seen as an emergent property of networks of principal cells and fast-spiking interneurons. In contrast, in the neocortex a number of elegant studies have shown that specific types of principal neur...
متن کاملEnergetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks
Overview: We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly. Background: Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron ...
متن کاملSelf-Organized Supercriticality and Oscillations in Networks of Stochastic Spiking Neurons
Networks of stochastic spiking neurons are interesting models in the area of theoretical neuroscience, presenting both continuous and discontinuous phase transitions. Here, we study fully-connected networks analytically, numerically and by computational simulations. The neurons have dynamic gains that enable the network to converge to a stationary slightly supercritical state (self-organized su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011